
Solution Representations for Linear 

Initial Value Problems 

WILLIAM J. DAVIS 

Department of Mathematics 

CA§E INSTITUTE OF TECHNOLOGY 
UNWZRSITY CIRCLE CLEVELAND 6, OHIO 



SOLUTION REPRESENTATIONS FOR LINEAR INITIAL VALUE PROBLENS 

W i l l i a m  J. Davis 

Case I n s t i t u t e  o f  Technology 

This work was supported i n  pa r t  by National Aeranautics and 
Space Administration, Grant number NsG-54.4. 



SOLUTION REPRESENTATIONS FOR LINIQB INITIAL VALUE FROBLENS 

bY 
W i l l i a m  J. Davis 

Mathematics Department 
Case I n s t i t u t e  of Technology 

University Circle 
Cleveland, Ohio ,!+.&lo6 

1. Introduction 

This paper i s  concerned with an expansion theory f o r  solving ce r t a in  

l i n e a r  i n i t i a l  value problems i n  p a r t i a l  d i f f e r e n t i a l  equations. 

cular ,  t h e  equations considered a r e  t o  have c l a s s i c a l  solut ions corres- 

ponding t o  a r b i t r a r y  polynomial i n i t i a l  data  functions. 

In  pa r t i -  

For t h i s  c l a s s  of problems, t he re  ex i s t s  a formal solut ion operator re- 

l a t e d  t o  t h e  equation, which transforms a r b i t r a r y  polynomials i n  t h e  space 

var iab le  i n t o  c l a s s i c a l  solut ions of t h e  equation. 

t h e  given polynomial a t  t h e  i n i t i a l  point. 

i s  an extension beyond t h e  constant coef f ic ien ts  case of t h e  der ivat ion 

of t h e  operational solut ions of t he  Heaviside o r  Mikusinski operational 

calculus  [lo]. 

immediate c l a s s i c a l  i n t e rp re t a t ion  of t he  e f f ec t s  of t h e  formal solution 

operator. 

The solut ion reduces +,Q 

The der ivat ion of this operator 

The transformation of polynomials fu r the r  provides an 

Through t h e  use of t h i s  operator, generalized Appell s e t s  of  polynomials 

a r e  transformed in to  basic  solut ion se t s  f o r  t h e  equation. 

pansions i n  terms of these  solution se t s  a r e  studied. 

theory has been obtained f o r  solutions of t h e  heat equation by Widder and 

Rosenbloom [12]. 

and generalized f’unctions have been used t o  f ind  generalized solutions,  see [ 9 ] .  

Series  ex- 

A similar expansion 

In  t h e  parabolic case, t h e  methods of Fourier transforms 
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The s e r i e s  representation theory here provides an a l t e rna t ive  method f o r  

such problems, does not give existence or uniqueness theorems, but does increase 

t h e  number of problems whose solutions may be examined expl ic i t ly .  It fu r the r  

removes t h e  consideration of t h e  type of  t h e  p a r t i a l  d i f f e r e n t i a l  equation, 

The representat ion theory i s  developed here f o r  a s ingle  equation i n  one 

space variable.  We fur ther  consider only t h e  first of t he  i n i t i a l  data  

conditions given, s ince t h e  theory for  a l l  i n i t i a l  data  functions i s  simply 

a vector generalization of this case. Generalized solutions are made t o  

correspond t o  given i n i t i a l  data  functions by t h e  use of t h e  theory of bi- 

orthogonal expansions i n  Banach spaces [ 71. 

2. Solutions having polynomial i n i t i a l  data,  

I n  t h i s  sect ion we develop a mekhod f o r  solving t h e  l i n e a r  homogeneous 

i n i t i a l  value problem 

P(Dx,Dt) U(x,t> = 0; U(X,O)  = Qk), (2-1 1 
where Q(x)  i s  a polynomial. The d i f f e ren t i a l  operator P(DxyDt)  i n  

(2-1) has t h e  form 

and Dt = - a . Throughout t h i s  work, L and M are a 
a t  where D = - 

X ax 
t o  denote t h e  orders specified i n  (2-2). 

calculus, i f  t h e  coeff ic ients ,  a a re  constants, there  e x i s t s  an operational 

solut ion t o  (2-1) t o  be interpreted within t h e  f i e l d  of convolution 

quot ients  [lo]. 

here which has the  formal property that 

solut ion t o  problem (2-1), f o r  a rb i t r a ry  functions 

Q(x) 

In  t h e  Mikusinski operational 

i j '  

A similar  operational solution, F(x,t,Dx), i s  developed 

F(x,t,Dx)Q(x) = U(x,t), t h e  

Q(x). In  t h e  case that 

i s  a polynomial, this transform is  a c l a s s i c a l  solution t o  t h e  problem. 
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Theorem 2-1: Suppose F(x , t ,h )  i s  a c l a s s i c a l  solution t o  the  associated 

operator problem. 

P(Dx+ h,Dt) F(x, t ,h)  = 0; F(x,O,X) = 1. (2-3 ) 

Then, F(x,t,D i s  a formal solution operator which transforms a rb i t r a ry  

polynomials, Q(x), i n t o  c l a s s i ca l  solutions of (2-1). 

Proof: Since polynomials are e n t i r e  functions, F(x,t,D )Q(x) becomes a 

c l a s s i c a l  solution t o  (2-1) whenever the  operator i d e n t i t i e s  

X 

x 

P(DxyDt) F(x,t,D X ) = 0; F(x,O,Dx) = 1 (2-4) 

where w e  used Leibniz 's  rule, and where D denotes d i f f e ren t i a t ion  with 

respect t o  t h e  first argument. If w e  now replace D on t h e  r i g h t  hand 

s ide  by X ,  we get  

1 

X 

L M  i 

i=o j=o 'J k=O 
C C a. . (x , t )  Di C (i)D:-\kF(xytyX) = (2-6) 

T h i s  vanishes by (2-3). For t h e  i n i t i a l  conditions, w e  get  
h 

F(xyOyDX)Q(~)  = l - Q ( x )  = Qk). 
This completes t h e  proof. 

If t h e  coef f ic ien ts  i n  P(D D ) do not depend upon x, then t h e  formal xy t 
operator i t s e l f  need not depend upon x, f o r  i n  

(2-3) does not depend upon x. 

t h a t  case, t h e  equation i n  

The associated operator problem then becomes 
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If A represents  generalized d i f fe ren t ia t ion  , this i s  j u s t  t h e  Mikusinski 

f o w .  

I n  order t o  simplify t h e  in te rpre ta t ion  of t h e  formal solution operator 

ac t ing  on polynomials we shall consider i n  t h e  sequel, only formal solution 

operators  having t h e  se r i e s  form; 
co 

The following corol lary t o  theorem 2-1 shows that this form i s  always 

a t t a i n a b l e  i n  t h e  case that (2-1) has a c l a s s i ca l  solution f o r  a rb i t r a ry  poly- 

nomials, Q(x). 

Corollary 2-1: If the re  i s  a c lass ica l  solution Us(x,t) t o  (2-1) f o r  

Q(x) = $ ; s = 0,l y . . .  , then t h e  functions 
S. 

are t h e  coef f ic ien ts  of Dn i n  (2-8). 

Proof: Suppose F(x,t,Dx) has t h e  form (2-8). For i d t i a l  data  e , 
t h e  solut ion i s  formally j u s t  

X 
ax 

F(x,t ,a)eax . The exponential s h i f t  r u l e  may 

be wr i t ten  a s  

Therefore, i f  U(x,t,A) s a t i s f i e s  the  equation i n  (2-l), and i f  

U(x,O,A) = eAx , then 

( 2-11 ) -AX F(x,.t,A) = e U ( x , t , A )  

i s  t h e  desired solution t o  t h e  associated operator problem. Now, l e t  
00 

{Us(x,t)]s=o be t h e  solutions of t h e  hypothesis. Then, t h e  function 
cn 

U ( x , t , A )  = C U s ( x , t ) A S  (2-12) 
s=o 

s a t i s f i e s  t h e  requirements of (2-lO,ll), so t h a t  
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W 

F(x,t,X) = .-Ix c Us(x,t)XS 
s=o 

i s  t h e  solut ion of (2-3). This gives the  form (2-9) f o r  Fn(x, t ) .  

It may occur, a s  i n  [12], t h a t  each Fn(x, t )  i s  a polynomial. I n  that 

case, equation (2-8) then w i l l  give us t h a t  t h e  solut ions t o  (2-1) a r e  

themselves polynomials. L e t  N denate t h e  degree of Q(x). In  any case, 

For each Fm(x,t)  a polynomial, we get immediate degree r e l a t ions  i n  x 

and t f o r  U(x,t). Let Mn denote the degree i n  x of Fn(x , t ) ,  and l e t  

Nn denote i t s  degree i n  t. Then the  degree of U(x,t) i n  x i s  

It i s  a l so  c l ea r  a t  this point tha t  t h e  r e s t r i c t i o n  on Q(x),  i .e.  

t h a t  it be a polynomial, may be removed i f  w e  a r e  careful  about convergence 

of F(x, t ,D )Q(x).  If Q(x)  were analyt ic ,  t h i s  transform would ex i s t  

formally a s  

X 

W 

U(x,t) = C F ( x , t )  Q(m)(x) , 
m=O 

(2-16 ) 

and U(x,t) w i l l  be a solution under proper convergence of t h e  s e r i e s  on 

t h e  r i g h t  hand side. For solution expansions over - < x < O3 , such 

questions must be considered, but we r e s t r i c t  our a t ten t ion  t o  a f i n i t e  

i n t e r v a l  i n  t h i s  development. 

3. Generalizations of i n i t i a l  data  and dimension. 

Up t o  now we have discussed t h e  f o r m a l  solution operator only i n  t h e  case 

of a s ing le  i n i t i a l  data function, and with t h e  r e s t r i c t i o n  that x be a 
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one dimensional real variable.  

i n  t h e  sequel, we indicate ,  i n  t h i s  section, t h e  general izat ions t o  t h e  cases 

Although w e  sha l l  r e t a in  these r e s t r i c t i o n s  

of several  i n i t i a l  conditions, several space var iables ,  and t o  systems of equations. 

In  order t o  properly pose a Cauchy problem f o r  t h e  equation i n  (2-1), 

we need t o  specify t h e  M i n i t i a l  conditions 

where M denotes t h e  order i n  Dt of P(Dx,Dt). The formal solution 

operator f o r  t h e  problem thus at ta ined may be found as follows. 

F.(x, t ,X)  be a solution t o  t h e  jth 

Let 

associated problem: 
J 

f o r  j ,k = 0,1,. . . ,M-1. 

F.(x,t,D be given a s e r i e s  form. I n  t h i s  case, 

Here, a s  i n  the previous section, we may ask that  

J X 
00 

Then, l e t  F(x,t,D ) denote t h e  M-vector 

(Fo(x,t,Dx),...,FM - l(xyt,Dx)). Let O(x) denote t h e  M-vector 

(cpo(x) ,.. . , %-l(x) ). 

X 

Then, j u s t  a s  above, t h e  scalar  product of these 

vectors,  
u (x , t>  = F(x,t,Dx) a x > ,  

i s  t h e  desired formal solut ion t o  t h e  given Cauchy problem. 

(3-4) 

We have a l s o  considered only problms i n  t h e  s ing le  space var iab le  x. 
5 “‘n 

1 n 
If w e  allow x t o  denote (5 ,... ,xn), and def ine D Z  = Dx ... Dx , 

equation forms such as  (2-1) remain unchanged, and t h e  associated operator 

equation i s  s t i l l  

P(Dx -t A,Dt)F(x,t,A) = 0, (3-5 ) 

where A = (1 ly...,X ). m a n s i o n s  of i n i t i a l  data  functions w i l l  general ize  n 
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immediately t o  n-space i f  t h e  domain o f  def in i t ion  of these functions i s  
m 

contained i n  some product s e t ,  fi I.. 
i=l 

T h i s  i s  due t o  t h e  f a c t  t h a t  
1 

Now consider a system of equations 
k _ _  
C P.  (D ,D )U (x , t )  = 0-  j = 0,1, ..., J. k x t k  k=O 

(3-6) 

If w e  use  precisely t h e  same arguments a s  i n  theorem 2-1, w e  f ind t h a t  t h e  

associated 

Once again 

treated i n  

operator equation f o r  t h i s  s i tua t ion  i s  j u s t  
k 

this i s  j u s t  a vector generalization of t h e  s i t ua t ion  which i s  

this work. 

4. The solut ion representation problem. 

We have determined a method f o r  finding c l a s s i c a l  solutions t o  (2-1), 

i n  t h e  case t h a t  Q(x) 

We now extend t h e  c l a s s  of admissible i n i t i a l  data  f o r  such problems t o  

ce r t a in  subsets of L ( I ) ,  where I denotes some closed in t e rva l  o f  t h e  

x-axis, 

i n  t h e  case that Q(x) i s  a bas i s  element f o r  L2(-,a) such as, perhaps, 

any Hermite orthogonal function. 

polynomials w i l l  s u f f i ce  f o r  t h e  representation of i n i t i a l  da ta  due t o  t h e  

Weierstrass approximation theorem. 

i s  a polynomial (or perhaps an ana ly t ic  funct ion) .  

2 

If w e  wish I t o  be (a, a), we must extend theorem (2-1) t o  hold 

For any f i n i t e  i n t e rva l ,  t h e  c l a s s  of a l l  

I n  pa r t i cu la r ,  t h e  polp-omial approximations used sha l l  be elements 

of the  l i n e a r  span of a simple set o f  generalized Appell polynomials. 

Boas and Buck [2,3] have shown t h a t  polynomials of degree prec ise ly  equal 

t o  n are generated by a function of t h e  form 
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i n  t h e  sense t h a t  
W 

n 
G(x,a) = c pn(x)a . 

n=O 
Here we must have 

m 
A ( a )  = C Anan , A. 0, (4-3 1 

n=O 

and 

The above mentioned Hermite orthogonal functions have such a generator, 

except t h a t  i n  that case, condition (4-5) i s  violated.  

Boas and Buck have studied representations i n  se r i e s  form of ana ly t ic  

funct ions i n  terms of such sets. 

funct ions i n  terms of these polynomials, w e  r e l y  upon t h e  theory of  biorthogonal 

I n  order t o  a t t a i n  expansions of L 2 ( I )  

expansions i n  Banach spaces. In  par t icu lar ,  we use t h e  presentation of this 

theory i n  [ " I .  
I n  this way, if t h e  set {pn(x)) i s  minimal (cf.  8 5 ) ,  we obtain se r i e s  

representat ions f o r  i n i t i a l  data  functions i n  t h e  form 

We c a l l  t h e  corresponding s e r i e s  
03 

V(x,t>- c CnPn(X,t) (4-7) 
n=O 

a generalized solution t o  (2 -1 ) ,  f o r  Q(x)  = f ( x ) .  In  (4-7) ,  

p n ( x , t )  1 F(x,t,Dx)pn(x), t h e  solution t o  (2-1) f o r  Q(x> = p n (x). A 

special  s d u t i o n  expansion theory f o r  the heat equation i s  handled i n  a 

s imi la r  manner by Widder and Rosenbloom [ 1 2 ] .  I n  t h a t  case, t h e  formal 
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solut ion operator 

and t which a r e  

The advantage 

tD2 
X i s  e , and 

closely re la ted  

t h e  basic solutions a r e  polynomials i n  x 

t o  the H e r m i t e  polynomials. 

i n  using generalized Appell polynomials i n  t h e  expansion 

theory l i e s  i n  t h e  f a c t  that t h e  corresponding solution sets, {pn(x , t ) )  , a r e  

n Thus, i f  cn = a i n  ( 4 4 )  and (4-7) the  convergence of t h e  generalized 

solut ion i s  iden t i ca l  with t h a t  of t h e  s e r i e s  f o r  H(x,t,a). It i s  precisely 

this correspondence that i s  basic t o  the subsequent convergence theory. 

Let R ( x , t )  

a t  t h e  point (x , t ) .  

be t h e  radius  of convergence of t h e  series Can pn(x , t )  

By t h e  rad ica l  t e s t ,  

Furthermore, t h e  

- 
l im 

n + = =  

and diverges i f  

l i m  
n 4  03 

- 

se r i e s  i n  (4-7) converges a t  ( x , t )  i f  
- I  

lcnPn(x,t)I1'n < 1, 

( 4-11 

Therefore, w e  may s t a t e  t h e  basic  convergence c r i t e r ion  i n  t h i s  lemma. 

Lemma 4-1: The s e r i e s  i n  (4-7) converges a t  (x , t )  i f  

C < R(x, t ) ,  (4-12 

and diverges the re  i f  

C > R(x,t) ,  
where C i s  defined a s  

The case C = R(x, t )  i s  indeterminate by this test .  
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We c a l l  a sequence {C,] a C-sequence i f  and only i f  (4-14) holds. 

The constant C w i l l  be ca l led  the  growth of  {Cn]. 

5. Expansions of i n i t i a l  data. 

Here w e  determine t h e  coef f ic ien ts  C i n  k-6) corresponding t o  n 

a r b i t r a r y  f (x) &L2(I ) .  

of Generalized Appell polynomials. 

expansions i n  Banach space, i n  par t icular  a s  presented by R i n k  [ 7 ] .  For 

completeness, t h i s  work i s  summarized in  t h e  following paragraph, i n  t h e  case 

that t h e  Banach space i n  question i s  

For these expansions, w e  use cer ta in  r e s t r i c t e d  s e t s  

We rely on t h e  theory of biorthogonal 

L 2 ( I ) .  

A sequence of polynomials {pn(x)] i s  said t o  be minimal i n  L 2 ( I )  

i f  pn(x) j! sp {pm(x)]+ . 
then t h e r e  i s  a unique constant 5 such t h a t  f ( x )  - qnpn(x )  i s  i n  

If {pn(x)] i s  minimal, and if f (x )eL2( I ) ,  

sp{pm(x) jm+. 

L (I)  by t h e  r e l a t ion  

space, t h e r e  e x i s t s  a s e t  {Wn(x)] c L 2 ( I )  such that L n ( f )  = ( w n , f ) ,  

and such t h a t  

{pn(x); wm(x)]  i s  cal led biorthonormal, and i s  said t o  be complete if 

These constants determine continuous l i n e a r  funct ionals  on 

qn = L n ( f ) .  Therefore, s ince L2 i s  a Hilber t  
2 

(wn,pm) = bm, t h e  Kronecker de l ta .  A systan such as 

e i the r  P = {pn(x)] i s  complete o r  i f  W = { w n ( x ) ]  i s  complete. If 

{P;W] = {pn(x);wm(x)] i s  complete, then both P and W a r e  complete. 

The existence of t h e  s e t  W biorthonormal t o  P i s  suf f ic ien t  f o r  t h e  
Ll 

minimality of P. Let f ( x )  = 1 . i . m .  C c&pk(x). Then, we ge t  
n-+ 03 k=O 

l i m  c = (w,(x),f(x)), a f a c t  we use i n  determining t h e  s e t  {c k ]. nk n-+ ~0 

Since t h e  minimality of P i s  necessary and suf f ic ien t  f o r  t h e  ex- 

i s t ence  of t h e  s e t  

minimal i n  L (I) ,  where now I i s  ei ther  t h e  domain Df i n t e r e s t  f o r  t h e  

problem, o r  some containing in te rva l .  I n  ce r t a in  cases,  t h e  non- 

W, w e  shall consider generalized Appell s e t s  which a r e  

2 
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minimality of P may be determined by an examination of t h e  generator, 

A(a) $ ( = ( a ) )  [3]. 

c lose ly  a l l i e d  t o  t h e  domain of 

Lemma 5-1: L e t  t h e  complete set [p,(x)] be minimal i n  L 2 ( I ) .  Then P 

i s  not minimal i n  L (J) i f  J31  and J - I has pos i t ive  measure, o r  i n  

L2(J )  i f  I 3 J  and I - J has posi t ive measure. 

This lemma fur ther  ind ica tes  that minimality i s  also 

L 2 ( I ) .  

2 

Proof: Suppose f i rs t  t h a t  13J. Let f ( x )  E L 2 ( J ) ,  and g (x )  E L 2 ( I )  such 

that, i n  

and $(x)  thusly: 

I - J, g (x )  # 0 on a set of pos i t ive  measure. Define ~ ( x )  

cp(x> = ( f (x)  ; X E  J 

$(x) = f (x )  ; X E  J 

0 X E  IJ, 

and 

ip(x) ; X E  I-J. 

Both ~ ( x )  and $(x)  a r e  i n  L2(I), and determine unique sequences 

Cyn] and [$n] which a r e  not equal. Consider t h e  sequence {en]= {cpn-$,]. 

The funct ion determined by this sequence i s  zero f o r  X E  J, so i n  

L2(J), i f  p,(x) = - C o( p (x) ,which contradicts  t h e  
n n  % nfk 

minimality of P i n  L 2 ( J ) .  

from this. 

The aigument f o r  J 21 follows immediately 

We now tu rn  t o  +he problem of determining t h e  set [w (x)] biqrthogonal n 

t o  a minimal generalized Appell s e t  {pn(x)]. Suppose t h a t  G(x,a) i s  

ana ly t ic  i n  a f o r  a l l  X E I  f o r  la1 Lmax ( lHl, lpl) .  Here H and 

denote t h e  endpoints o f  I. Consider t h e  Fredholm i n t e g r a l  equation of 

t h e  first kind, 

f ( x )  = G(x,y)Ffy)dy. (5-1) 
I 

Upon subs t i tu t ion  of t h e  s e r i e s  form o f  G(x,y), t h i s  becomes 
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a3 

f (x) = c pn(x) J YnF(Y)dY 
n=O I 

(5-2) 

If t h e r e  i s  a function F(y) such that (5-1) i s  s a t i s f i e d  and t h e  i n t e g r a l  

on t h e  r i g h t  i s  almost uniformly continuous, then t h e r e  i s  an expansion f o r  

f ( x )  i n  terms of {pn(x)) with cn = JynF(y)dy. 

L e t  K1(x7y) = f G(x,x)G(y,x)dz and l e t  K2(x,y) = G(z,x)G(x,y)dx. 

{An] , {vn(x)] and 
I I 

Then t h e r e  exist s e t s  of  eigenvalues and eigenfunctions, 

{ f n ( x ) ]  such t h a t  
n 

(5-4) 

since t h e  kernels  K1 and K2 a r e  symmetric. 

a necessary and su f f i c i en t  condition f o r  t h e  existence of  a square integrable  

By a theorem of Picard [ A ] ,  

solution t o  (5-1) i s  t h a t  

be convergent. 

Lemma 5-2: 

Thus, w e  have t h e  fo1;lowing lemma. 

If t h e  series (5-7) i s  convergent, t h e r e  exists F ( Y ) E  L 2 ( I )  

such t h a t  
( f , w n )  = (yn,F(y)) .  (5-8) 

Let {pn(x)]  be a simple minimal se t  of polynomials i n  

be a complete orthonormal set of polynomials f o r  

L 2 ( I ) .  

L e t  

For any f ( x )  e L 2 ( I )  we have 

{$,(x)] L 2 ( I ) .  
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(5-9) 

i n  t h e  mean on I. Also, by t h e  continuity imposed upon G(x,y) f o r  

(x ,y)  E I  x I, we have 

m 

From (5-8) and (5-11) we ge t ,  f 0 m a l l Y 7  

Since {Sk(x)] i s  a complete orthonormal set of polynomials w e  have 

Therefore, from (5-12) and (5-13) w e  get formally 

The convergence i n  t h e  mean of  t h e  first s e r i e s  i n  t h i s  l a s t  expression i s  

guaranteed by t h e  minimality of {pn(x)]. This y i e lds  t h e  theorem. 

Theorem 5.1: If {pn(x) ]CL2(I )  i s  a minimal simple set of polynomials, 

then t h e  sequence {w,(x)] 

{pn;wm] 

i s  a subset of L (I), and t h e  system 2 

i s  complete and biorthonormal i n  L2(I). 
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6. Convergence of generalized solutions. 

We now tu rn  t o  t h e  p rob lm of convergence of t h e  generalized solutions,  

(4-9).  

point  sets i n  t h e  plane i n  which t h e  ser ies  converges. 

defined i n  (4-9) ,  and l e t  

The b a s i s  fo r  this theory i s  lemma 4-1, which i s  used t o  determine 

L e t  R(x,t) be as  

t h e  order of' t h e  operator,  P(Dx,Dt), 

U(x,t) 

o f  t h e  equation i n  (2-1). Let 

denote t h e  s e r i e s  i n  (4-7), and def ine 

It i s  c l e a r  tha t  Q(x,t)  

Cbnqn(x,t). Consider R(x,t) and Q(x , t )  as  funct ions of x and 

t. If w e  admit t h e  possible  value + c a  i n t o  t h e  ranges of these  

functions,  then each of than 'is a well-defined, non-negative function 

i s  t h e  radius of convergence of 

f o r  a l l  (x , t )  i n  t h e  plane. 

f ix  C such that, 0 I C *. Let us now def ine  t h e  point  

sets UC(x7t) ,  V (x , t )  and Cc(x7t) by t h e  r e l a t i o n s  C 
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We now 

which justify 

i s  clear from 

derive the containment and convergence relations 

the above definitions of generalized solutions. 

the defining relations that Uc(x,t) c - VC(x,t). 

It 

Also, 

~enrma 6-10 . Let {en} be a C-sequence. Then, the series for 

U(x,t) 

me series, (6-2), for W(x,t) converges inside 

- Proof: By lemma 4-1, U(x,t) converges for  C < R(x,t), i e  for  

(x,t) E Uc(x,t). Also, U(x,t) diverges for  C > R(x,t),for 

(x,t)  # VC(x,t). FinaJ.ly, W(x,t) converges for d Q Q(x,t), ie.  

for  (x,t) c: C,(x,t). 

converges inside UC(x,t), and diverges outside Vc(x,t). 

CC(x,t). 

This next l emma provides an alternative description of the 

setre uc(x,t) and CC(x,t). First, l e tU(x , t )  - {(x,t)lpn(x,t) # o 

for  only f in i te ly  many integers n}. 

R(x,t) and Q(x,t) are both equal t o  + Q). 

On r ( x , t )  it i s  clear tha t  

I;enrma 6-2: Let Ii= (IC,}} be the collection of all C-sequences 

for  some fixed C. 

all points at which U(x,t) converges. Let C((cn), x , t )  be 

the set of points at which W(x,t) converges. Then, 

For (c,) C, l e t  U((cn}, x , t )  be the set  of 

n u  ( b J ,  x , t )  u&t) , a d  (6-6)  

where the intersections axe taken over all elements of r. 
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- Proof: First consider lKJ([cn), x, t) .  It is  clear that  

f l (x , t )  c, uc(x,t) C, nv({cn}, x,t), 

defines a convergent generalized solution inside Uc(x,t). 

(x,t) be an element of n U({cn}, x,t) - UC(x,t). 

R(x,t) - C, 

since any C-sequence 

Let 

A t  this point, 

since each U({cn], x,t) c - VC(x,t) by the previous 

1-. Let cn 

i f  p,(x,t) = 0. 

-1 
* Cpn(x,t) 1 if P&t) # 0, and l e t  cn = 0 

Then, there is a subsequence of [c,} such that 

R(x,t), by the definition of R(x,t). Therefore, 

set cn - 0 also i f  c, is not an element of such a subsequence. 

The sequence thus constructed i s  a C-sequence. I ts  associated 

generalized solution diverges since the series i n  (4-7) becomes en 

infinite sum of 1's. Therefore, the se t  f l  U([cn},x,t) - 
Uc(x,t) - 9 . IIhe proof of the second part is precisely the s ~ m e .  

We now establish the key theorem i n  the correspondence of 

U(x, t ) t o  classical and Sobolev generalized continuous solutions 

c111- 

Theorem 6-1: The series (4-7) defining U(x,t) converges t o  

a continuous generalized solution of the equation i n  (2-1) on 

compact subsets of Uc(x,t). 

cal  solution of the equation on c q a c t  subsets of CC(x,t) which 

contain the set 

- Proof: Let X be a compact subset of UC(x,t). Let 

This series converges t o  a classi- 

I x to). 

N 
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N 

n=O 
SN(xyt) i s  a classical solution to  (2-1) with Q(x) - C cnpn(x). 

By lema 6-1, {q(x , t ) ]  converges pointwise i n  X, and so the 

sequence converges uniformly t o  a continuous f’unction on X. Such 

a l i m i t  i s  a Sobolev generalized solution. 

Lat Y be a compact subset of CC(x,t), such that  

Y 3 - I x to}. 

formly i n  Y t o  a continuous f’unction. 

Then, by the argument above, W(x,t) converges uni- 

With suitable choices of 
integration functions, pn(x, t )  = J*{%[...) dy L M  ds . Inte- 

grating the series for W(x,t) term by term (L,M) times i n  t h i a  way, 

WB get U(x,t). 

W(x,t), the l imit  of {%(x,t)} is U(x,t), and i s  L times con- 

tinuously differentiable in x and M times continuously differ- 

By the uniform convergence of the series for 

entiable i n  t. Since I x [O)C Y, lim U(x,t) exists, i s  L 

times continuously differentiable and represents the i n i t i a l  data 
t-0 

flrnction for  the problem. 

This theorem also gives us a f’urther containment relation 

between sets. 

the series for  W(x, t ) converges wbenever {$(IC, t )] converges. 

Thus,m have the relations 

A single point i s  a compact set i n  the plane, so 

CC(x,t) 5 UC(x,t) 9 Q(x,t) <, P(x,t)* 6 - 9 1  

I n  order t o  develop a correspondence with the theory of 

distributions, we need some characterization of measurable sets  on 

which the series (4-7) converges i n  the mean. Let R({cn],x,t) 
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be such a se t  for a given sequence (cn). 

series i n  (4-7) converges i n  the mean on R((cn),x,t). Such sets  

exist  if Uc(x,t) contains a measurable compact subset. This i s  

due t o  the fact  that, on such sets, 

That is, suppose the 

U(x,t) is uniformly continuous, 

and therefore square integrable. We also obtain the following 

Lemma 6-3: 

positive measure. Then, 

Euclidean closure. 

ht Y be a connected subset of R((cn),x,t) with 

Y c - VC(x,t), where the bar denotes 

- Proof: 

therefore i n  measure in  Y. Let  Ye be the points of Y a t  which 

the series (4-7) converges. 

Y i s  connected, 80 Ye 

lemma 6-1. It follows that  

The series for U(x,t) converges i n  the mean on R, and 

Then, Y - Y' has zero measure, and 

is dense i n  Y. Also, Ye c - Vc(x,t) by 

By definition, the parti al sums of (6-8) converge i n  the 

mean on R([cn], x,t),  t o  a Sobolev L2(R), generalized solution of 

the equation of (2-1). Now we develop an immediate connection with 

the theory of distributions as applied t o  par t ia l  d i f f e ren t id  

equations [SI. 

Lemma 6 4 :  Let  cp(x,t) be an a r b i t r a r y  element of the testing 

space CI(R({cn), x,t)) .  Let U(x,t) be the L,.-)R\limit of the 

par t ia l  sums i n  (6-8). Then the distribution of fbnction type 

n 
defined by 
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is a solution i n  the distribution sense t o  the equation i n  (2-1). 

- Proof: Let  TP(Dx,Dt) denote the formal adjoint of P(Dx,Dt). 

Then, 

By the Lebesgue dominated convergence theorem, since the integral  

of this limit exists, we get immediately that  P(Dx,Dt) U(cp) = 0. 

We may classify i n i t i a l  data f'unctions according t o  the 

growths of their  pseudo-Fourier coefficients, cn. That is, l e t  

f (x )  E L2(I). Then we say that f(x) has powth C i f  (cn) i s  

a C-sequence. This definition, together with the convergence 

theory developed up t o  this point, prompts the following definition. 

Definition 6-1: - 
i n i t i a l  data function i f  i t s  growth is f in i t e .  

L i n i t i a l  data i f  there exists a se t  R([c,), x , t )  containing -2 

I x (0). The f'unction f (x)  i s  generalized continuous i n i t i a l  

data i f  UC(x,t) 3 - I x[O), and i s  classical  i n i t i a l  data If 

A function, f(x) E L2(I), i s  a generalized 

It i s  generalized 

cc(x,t) 3 - I x fo). 
The following lemma i s  concerned with the existence o r  

non-existence of the convergence sets Uc(x, t ) .  As becomes 

apparent i n  the proof, the lemma holds as w e l l  fo r  the se t s  

kmna 6-5: There exist void convergence se t s  Uc(x,t) i f  and 
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only i f  R(x,t) i s  bounded above. If R(x,t) i s  bounded below 

by M, then UC(x,t) i s  the whole plane for all 

- Proof: If UC(x,t) = $ for some C, then there i s  no point 

(x,t) such that  C < R(x,t). Such a C serves as an upper bound 

for R(x,t). 

If R(x,t) > - M > C, 

all. points of the plane. 

C < - M. 

If R(x,t) 5 N, then Uc(x,t) = for  alJ. C > N. 

then the defining relation is  satisfied at  

I n  the preceding work of t h i s  section, we have considered 

the sequence [cn]fixed, and have then determined the corres- 

ponding convergence sets. I n  general,however, we wish to deter- 

mine cmvergence of generalized solution series for  the problem 

P(Dx,Dt) U(x,k) = 0 f o r  (x,t) E I x E, (6-11) 

where I and E are x and t intervals, respectively, and 

where 0 E E. 

theorem. Le t  

We answer th i s  convergence question i n  the next 

R(x,t), and = inf Q(x,t). 
IXE 

(6-13) 

Theorem 6-2: - Let  f(x) E L2(I) have growth C.  If  C < %, 
then the series for  U(x,t) converges t o  a generdized continuous 

solution t o  problem (6-11,12). If C < &R, the series for 

U(x, t )  converges t o  a classical solution of (6-11,U). 

for U(x,t) defines an L2(IxE) generalized solution t o  the 

problem only i f  C < - ess inf R(x,t) .  

The series 

IXE 
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Proof: Under the hypotheses, C < % implies that  

Uc(x,t) 3 - I x E, 

The rectangle I x E is  compact, so theorem 6-1 gives the first 

- 
and C implies tha t  CC(x,t) 3 - I x E. 

two conclusions. If C > ess. in f  R(x,t), there is a set  of 

positive measure i n  I x E on which C > R(x,t). On this subset, 

the series for U(x,t) must diverge, so that U(x,t) cannot con-. 

verge i n  the mean on I x E. 

7. The analyticity theorem. 

The theorem of t h i s  section provides a method for deter- 

mining the convergence radius, R(x,t), used i n  the definition of 

the convergence se t s  Uc(x,t) and Vc(x,t). The method i s  baeed 

on the special form of the Boas-Buck generator for the basic poly- 

n o d a l  sets.  I n  case G(x,a) = e the determination of 

R(x,t) i s  immediate. 

F(x,t,h). Then, 

ax 

Let r (x , t )  be the radius of convergence of 

F(x,t,Dx) G(x,a) = e ax F(x,t,a), 

so that r (x , t )  = R(x,t). 

c i t y  theorem will determine Q(x,t) and the se t  CC(x,t). We 

s ta te  and prove t h i s  theorem i n  severd pasts t o  ease the con- 

sideration of separate cases. 

A direct generalization of the anaJyti- 

Suppose, first, tha t  the generator G(x,a) i s  an entire 

f’unction of a at the point x. Then, {pn(x)) satisfies 
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Consider 

a t  the point (x,t) .  Since G(x,a) i s  entire, A(a),g(a) and $(s) 

are all entire.  We now determine conditions on the formal solution 

operator, 

H(x,t,a), t o  be an entire function of a. If cf, ( t )  i s  an ent i re  

function of t with growth ( P,T), then 0 ( t )  i s  again entire 

and of growth ( p , T  ),[I]. 

F(x,t,Dx), which force the transformed generator, 

k 

Since we are interested only i n  growth 

arguments, we consider the sum 

instead of the more complicated form i n  (7-2). 

fined by (7-3) is, therefore, entire i n  a whenever F(x,t,g(a)) i t3  

en t i re  i n  g(a). 

Theorem 7-1.1: I f  F(x,t,A) and G(x,a) are entire functions 

of A and a a t  (x,t) and x repsectively, then H(x,t,e) is 

an entire f'unction of a a t  (x,t), and R(x,t) - + m . 

The Function de- 

This proves the first part  of the theorem. 

If F(x,t,h) is a regular analytic flrnction of h a t  

(x,t), l e t  r (x , t )  denote i t s  radius of convergence there. Then 

(7-3) represents an analytic function of a i f  lg(a)l < r (x , t ) ,  

The function A(x,t) i s  clearly greater than zero i f  r (x , t )  

is, since g(0) = 0 and g(a) 0. This gives us the second 

portion of t h i s  theorem. 
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Theorem '7-1.2: Suppose tha t ,  a t  (x , t ) ,  G(x,a) i s  an e n t i r e  

f'unction of a and F(x,t,A) i s  an ana ly t ic  function of A f o r  

l A l  < r ( x , t ) .  Then H(x,t,a) i s  ana ly t ic  and R(x,t) - A(x,t), 

where A(x,t) is defined by (7-4). 

- 

Now suppose t h a t  G(x,a) is j u s t  a regular  func%ion of a 

a t  x and has the  radius of convergence p(x) . Suppose first 

t h a t  g i s  en t i r e .  Then, if u is the radius  of convergence of 

Here we note t h a t  

vergence of g(a) f o r  all non-zero x, and is equal t o  t h i s  

p(x) must be smaller than the rad ius  o f  con- 

radlusat x = O .  

If F(x,t,  A)  i s  em ent i re  funct ion of A at (x, t ) ,  

t h e  series on t h e  r ight  i n  (7-2) will converge absolutely and 

uniformly i f  - 
(7-6) 

l / n  um I g"(a) l! (n)(xg(a))  1 < OD ' 
n+ 

Since g (a )  i s  f i n i t e  f o r  la1 < ~ ( x ) ,  th i s  holds i f  

The funct ion f (s )  is analytic, so +(n)(s) has the  same 

radius of  convergence. However, a t  a f ixed point  6 ,  f (n) ( 8 )  

may grow as rap id ly  as  n! as n increases .  We must, therefore ,  

consider t h i s  case i n  a d i f f e ren t  way. We have 
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Let b(x,t) 

power series In g( a). U s i n g  the radical t es t ,  we get 

denote the radius of convergence of t h i s  series as a 

1 -  b-'(x,t) = lim 
m-aD 

- 
The l h  am the right hand side 

reciprocal of the radius of convergence of the series 

i n  the variable y. Changing orders of summation, we get 

QD 

cp(x,t,y) - C n! Fn(x,t) ('Ix), 2 
n=O (l-y)ficl 

As a series i n  

gence given by d(x,t), where 

y[x-x~]-~ ,  this series has a radius of conver- 

- I/ 
d-l(x,t) = l i m  [(n!)l'n (Fn(x,t)l 7 - (7-10) 

n-= 

,OD 
l/n 

If r(x,t) is  f ini te ,  d(x,t) = 0 since (n!) 

with n. If r (x , t )  = +a, end if d(x,t) 7 0, the series 

for cp(x,t,y) converges f o r  lyl < 1, and lyl < 1x1 I 1 -yld(x,t). 

That is, the series converges f o r  y < min (1,-) = d 
l+d 
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(7-11) 

This gives the third part of the theorem. 

Theorem 7-1.3: If f (s)  has radiun of convergence (I, then 

H(x,t,a) has radius of convergence i n  a a t  (x,t)  given by 

R(x,t) I= inf Elal ; I ,da) I = b(x , t ) l*  (7-12) 

From equation (7-lo), we obtain the following corollary. 

Corollary 7-1: c If F(x,t,h) and * (e )  w e  both analytic 

functions with f i n i t e  convergence radii, H(x,t,a) diverges for  

all .  non-zero a, and R(x,t) = 0. 

Another example in which R(x,t) = 0 i s  given by the 

l?mml operator et$ connected with the heat equation, with the 

Boas-Buck generator G(x,a) = In  this  case, 

which diverges for  all non-zero choices of x,t  and a. 

due to  the fact that (7.10) becomes 

This is  

This completes the theorem except for  the consideration of 

the effects of A(a). Since A(a) merely multiplies 

P(x,t,Dx) +(%(a)), i f  A(a) has a radius of convergence A, 
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then i n  any case, t h e  radius  R(x,t)  will just  be t h e  minimum of A and 

t h e  convergence radius  determined i n  the theorem. 

To determine Q(x,t) w e  must examine t h e  radius  of convergence 

of D i  D$(x,t,a). This i s  j u s t  

Therefore, w e  may use t h e  theorem t o  find Q(x,t) by finding t h e  radius  

of convergence f o r  each function 

8. The wel l  posed problem. 

I n  this, f o r  simplicity,  assume tha t  P(Dx7Dt) i s  f i r s t  order i n  t. 

Suppose t h e  problem (6-1-1~12) i s  w e l l  posed i n  t h e  rectangle  I x E. T h a t  

i s ,  suppose (6-11) has a unique solution corresponding t o  any c l a s s i ca l  

i n i t i a l  data  function, and t h a t  t he  solution depends continuously upon t h e  

i n i t i a l  data. The first lacuna shows that IxE5Vc(x,t) with C = sup P(x) .  The 
X E I  

function P ( x )  i s  t h e  convergence radius of t h e  generator G(x,a), a t  t h e  

point x. 

Lemma 8-1: Let (8-11,12) be w e l l  posed, and l e t  f ( x )  be c l a s s i c a l  

i n i t i a l  data. Then t h e  unique solution t o  t h e  problem i s  t h e  function 

U(x, t )  defined by (5-2). 

- Proof: The Weierstrass approximation and t h e  ana lys i s  of section 5 

guarantee t h a t  C(f,wn)pn(x) w i l l  converge uniformly on I t o  f (x ) .  

This s e r i e s  i s  a l so  L- t imes  continuously d i f f e ren t i ab le  term by 
N 

term on I. Let SN(x) = C (f,wn)pn(x). Then, since each S (x , t )  N n=O _ _  ~ 

of (6-8)  i s  a c l a s s i ca l  solution t o  (6-11) with 

t h e  well  posedness gives us t h e  desired result. 

SN(x70)  = SN(x) ,  

That i s ,  
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S N ( x y t ) +  U(x,t), and that U(x,t) i s  t h e  c l a s s i ca l  solution t o  (6-11,12). 

Using t h e  above expansion theory t o  obtain solutions t o  (6-11,12), it 

i s  na tu ra l  t o  ask when t h e  p a r t i a l  sums converge t o  a known solution t o  

t h e  problem. T h a t  i s ,  i f  SN(xy t )+  U(x,t) f o r  a l l  c l a s s i ca l  i n i t i a l  

da ta ,  and i f  U(x,t) 

T h i s  i s  answered i n  t h e  following theorem. 

of a l l  functions,  H(x,t) which a r e  L and M t i m e s  continuously d i f f e ren t i ab le  

i s  a c l a s s i ca l  s o l u t i o n , h t  can w e  say about t h e  problem? 

Let C L y M ( I  x E)  denote t h e  c l a s s  

i n  t h e  arguments x and t respectively. The norm which guarantees t h e  

completeness of this space i s  defined by 

L Let C (I) denote t h e  corresponding one var iab le  space with t h e  norm 

Theorem 8-1: L e t  f (x )  E C L ( I ) ,  so that f ( x )  i s  c l a s s i ca l  i n i t i a l  data. 

Suppose that  

whenever U(x,t) i s  a c l a s s i c a l  solution t o  (6-11) with U ( x , O )  = f (x ) .  

Then, problem (6-11,12) is w e l l  posed. 

Proof: The uniqueness i s  obvious, f o r  if U(x,t)  and V ( x , t )  were two 

solut ions with i n i t i a l  data 

I l U ( x , t >  - V(x, t )  II,,M= 

f (x ) ,  (8-3) would f a i l  f o r  one of than unless  

 his says U(x,t> = V ( x , t )  i n  c ~ ’ ~ ( I ~ E ) .  

We now show t h e  continuous dependence on i n i t i a l  data. L e t  
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As above, each fN(x) 

{pn(x)]. Let  Sm(x,t) be defined by 

has an expansion i n  terms of the set  

N 

By ( 8-3), there i s  a sequence of solutions {UM(x,t)) such tha t  

Sm+ UM fo r  each M. 

such that c n 4  0 as n+ a. Then, ( 8 -3) may be restated as 

follows : 

For each M, there exists N(M) such that N >, N(M) implies that  

L e t  {E,] be a sequence of positive reels  

I I s ~ ( x , ~ )  - ~ , < x , t l  IL,M 

L Also, since fM(x)-+ f(x)  i n  c (I), 

' that  (fM,wn)+ (f,wn) fo r  each n as 

each N, there exists M(N) such that 

< E  M' ( 8  -6) 

Frink's work guarantees 

M+ Q). Therefore, for  

implies that  M > - M(N) 

Letting {(M,N)) be p a r t i a l l y  ordered by 

C(Y,N1) 5 ( N p N 2 )  if aJld only if y < - % and m l  5 N23, 

( 8 -8) 

the completeness of CLPM(IxE)  

{S (x,t)] t o  U(x,t), due t o  a theorem of E.H. Moore [6J. 

Therefore, for each n there exists (Mn,Nn) such that 

guarantees the convergence of 

m 
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(M,N) 2 ( M ~ , N ~ )  implies that 

T b r e f o r e ,  U(x,t)  depends continuously upon f (x). 

It i s  c lear  t h a t  these  results apply a l s o  t o  t h e  weaker forms of solutions. 

We need only ask, i n  t h e  def in i t ion  of well posedness, t h a t  solut ions a r e  

Sobol ev generalized solut ions . 
9. Solution bounds and s t ab i l i t y .  

Here we obtain bounds, va l id  ins ide  convergence se t s ,  for convergent 

generalized solutions. Let I x E=UC (x, t ) .  Let f (x) be generalized 

continuous i n i t i a l  data for (6-12). Then, ( f , w n )  = cn such t h a t  [cn) i s  

a C sequence. 

Recalling that H(x, t ,a)  i s  analyt ic  i n  a, we have t h a t  

Using t h e  Cauchy in t eg ra l  form, we get  t h e  basic  inequal i ty  which is val id  

for p < R ( x , t ) :  

Ipn(x,t)  I I P - % ( X , t y P ) .  (9-2) 

The function %(x, t ,p)  i s  given by 

%(x , t ,p )  = sup IH(x,t,Z) 1. 
I Z l = p  

(9-3 1 

In  U (x , t ) ,  t h e  generalized solution i s  absolutely convergent, so that 
C 



The series on t h e  r igh t  converges f o r  

by Af ( p ) .  Therefore, f o r  C < p <R(x,t), t h e  generalized solution has 

C < p ,  and we shall denote i t s  sum 

Now using t h e  Cauchy-Schwarx inequality,  

Icnl = 1 (fywn) I I 1 l f l  I I IwnI I 9 

where t h e  norms a r e  taken i n  t h e  L (I)  sense. It follows that 2 

(9-7) 

- 
The s e r i e s  i n  (9-8) converges f o r  p > l i m l  Iwnl Illn= W . 
W < R(x, t )  i n  I x E, we can pick p 

and obtain t h e  uniform bound 

So, i f  

such that max(C,w) < p <R(x,t), 

1 1 s I I f  1 1 [ A ( P ) M H ( X , t , P )  3 (9-9) 

This bound gives  a continuous dependence of t h e  solut ion on i n i t i a l  

da ta  i n  t h e  generalized sense. 

I n  t h e  case that (9-8) holds, and that E = [ O p ) ,  these bounds may 

g ive  s t a b i l i t y  results for t h e  Foblaus.  

L a p a  11-1: 

% (XY t Y P 

%(x,t ,p)  o a s  t + m  . 

This lemma follows from (9-6). 

If (9-8) holds, t h e  n u l l  solution is s t ab le  i f  

i s  bounded a s  t+ 00, and i s  asymptotically s tab le  i f  

A s  an example, l e t  

P(DxyDt) = Dx- Dt - 2 t  . 
The formal solut ion operator i s  

-t2 etDx . F(t,Dx) = e 



I 
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Then, f o r  any Boas-Buck generator 

-t2 H(x,t ,a)  = e G(xS-t,a). 

It i s  c l ea r  t h a t  Iv&(x,t,p) 4 0 as t --$ w, unless  G(x,a) i s  e n t i r e  

i n  x with order 2 2. Therefore, t h e  n u l l  solution i s  asymptotically 

s t a b l e  if (9-8) holds. 

10. The mixed i n i t i a l  and boundary value problem. 

We wish t o  consider t h e  mixed i n i t i a l  and boundary value problem i n  t h e  

s t r i p  I x E, where I = [a ,b]  and E = [Op). I n  order t o  properly pose 

t h i s  problem, with t h e  equation of (2-1), we first impose Cauchy data  on 

I x {O]. Further we must specify K independent conditions on {a] x E, 

and J conditions on {b]xE. Here, K i s  t h e  number of cha rac t e r i s t i c s  

entering I x E a t  (a,O), and 

t h e  s t r ip  a t  (b,O) [SI .  

J, the  number of cha rac t e r i s t i c s  entering 

To i l l u s t r a t e  t h e  use  of t h e  above representat ion theory f o r  this 

problem, assume that K 2 1 and J 2 1. L e t  us  consider t h e  problem, 

(10-1) 

U(a, t )  = G ( t )  , U(b,t)  = H ( t )  . 
It i s  c l ea r  that, i f  e i the r  K o r  J i s  grea te r  than one, problem (10-1) 

i s  underdetermined. 

Laam 5-1 gives  us an uncountably many representat ions f o r  any functions 

if t h e  s e t  {pn(x)] i s  minimal i n  L (J)  with JTI. f ( x )  8 L2(I) 2 

cp,(x) = f ( x )  ; x E I 

Define q (x)  by t h e  following 
g 

g(x )  ; x E J - I .  (10-2) 
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I 

I 

I 
I 
1 

I 
I 

I 
I 

I 
I 

The expansion o f  9 (x) i n  terms of the set {pn(x)] i s  a representation 

of f (x )  
g 

for x E I. 

One might expect t ha t ,  if Ca p (x) i s  a representation of zero i n  I, n n  

then Ca p (x , t )  i s  a representation of zero i n  I x E. A simple example 

shows that this i s  not t h e  case. 

n n  

L e t  F(t,Dx) = et%, which i s  pa r t  of 

t h e  wave equation operator. Then, f o r  any x E I, pn(x , t )  = p,(x+t). L e t  

x e I  ; 

+I; x f I. 

m 

c anpn(x) = 
n=O 

Then, f o r  t > b - a,  
W 

z a p ( & ) =  e -Ix+.t 1 * X E I .  
n=o n 

T h i s  i s  obviously due t o  t h e  propogation o f  solut ions along cha rac t e r i s t i c s  

f o r  t h e  hyperbolic problem. This gives us some freedom i n  adjust ing t h e  

boundary values f o r  t h e  solutions.  

Let f ( x )  be t h e  i n i t i a l  data function f o r  t h e  problem. Then, 

i s  a representat ion for  f ( x )  i n  I which vanishes outs ide I. The 

generalized solution, m 

w i l l  be ca l led  t h e  basic solut ion t o  the problem. This solution imposes 

ce r t a in  boundary values upon {a) x E and {b)x E. L e t  

We must now solve t h e  derived problem 

We der ive  necessary and su f f i c i en t  conditions a t h e  functions G l ( t )  
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and H l ( t )  which allow us  t o  solve (10-3) by means of t h e  s e r i e s  repre- 

sen ta t ions  derived above. 

Assume that V(x,t) = Canpn(x,t) i s  a generalized solution t o  (10-3). 

Then V ( a , t )  = G l ( t ) ,  

Also, w e  need Hl(t)e sp[pn(b,t)]. 

and it i s  necessary that G l ( t )  E sp{pn(a,t)]. 

If G l ( t )  and % ( t )  are i n  these manifolds, 

t h e  sequence must determine a zero representation i n  e i the r  

sp {pn(a , t ) ]  o r  sp {pn(b , t ) ]  . If t h i s  l a s t  condition i s  sa t i s f i ed ,  

l e t  {y 3 denote t h e  common sequence o f  coeff ic ients .  Then, V ( x , O )  = Xynpn(x) 

must vanish for  x E I. It i s  c l ea r  t h a t  these s teps  are reversible ,  so 

{an - en] 

n 

w e  have t h e  desired conditions. 

Lemma 10-1: 

representat ion theory i f  and only i f  the  following three conditions are 

Prouem (10-3) has a solution i n  t h e  generalized sense of t h e  

simultaneously sati sf i ed . 

There e x i s t s  cyn] such that 

W 

c ynpn(x) = 0 f o r  x E I . 
n=O 

It i s  c l ea r  that 

from t h i s  theory, o r  t h a t  

(10-3) may have a solut ion which i s  not a t t a inab le  

(10-3) may not have a solut ion even though (10-1) 

does, s ince t h e  theory may not be applicable t o  t h e  pa r t i cu la r  problem. 
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For t h e  heat equation, with G(x,a) = eax, we ge t  

Therefore, both p (x , t )  and ~ ~ + ~ ( x , t )  

spIpn(a,t)] and spipn(b,t)] a r e  dense on 

(10-4) i s  simply that g,(t) and %(t)  

case. Also, by t h e  duplication of degree, 

2n have degree n i n  t. Therefore, 

L2 (E).  Therefore , condition 

a r e  elements of L ~ ( E ) ,  i n  this 

CPn(a,t)3 and CPn(bYt)l 

cannot be minimal, so the re  a r e  zero representations ava i lab le  t o  f a c i l i t a t e  

(10-5 ) 

11. The nonhomogeneous problem. 

We now ind ica t e  t h e  analogous operator-expansion theory f o r  t h e  problem 

u(x,o) = g(x>.  (11-2) 

I n  case P(DxyDt) i s  of first order i n  Dty we may use Duhamel's pr inc ip le  

[ 5 ]  t o  solve this problem. 

p r inc ip l e  t o  t h e  higher order case yields  in tegro-d i f fe ren t ia l  equations 

which may not be solvable. 

d i f f e r e n t i a l  operator G(Dx,Dt) such that 

However, an attempt a t  extending Duhamel's 

However, suppose the re  ex i s t s  a formal 

then, G(X,p )  i s  t h e  solut ion t o  t h e  associated equation 

Further, j u s t  as i n  section 2, i f  there  i s  a solution t o  t h e  equation 
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f o r  each p a i r  (m,n), then t h e  formal  operator e x i s t s  i n  t h e  form 

m n  
and Vmn(x,t) = G(Dx,Dt)x t . Therefore, w e  have t h e  theorem. 

Theorem 11-1: If (11-5) has a solution f o r  each m and n, then the re  

e x i s t s  a formal operator, G(Dx,Dt),  such t h a t  (11-3) holds f o r  any polynomial 

f (x , t ) .  

functions f ( x , t ) ,  j u s t  a s  i n  t h e  L2 We may now expand a r b i t r a r y  

homogeneous case, i n  terms of polynomials of t h e  form pm(x)qn(t) ,  and 

ge t  formal solut ions of the form 

(11-7) 

A 

where now P 

Let 

(x , t )  = G(Dx,Dt)pm(x)qn(t). Then, l e t  h(x)  = g(x )  -U(x ,O) .  mn 
F(Dx) be t h e  formal solution operator f o r  t h e  homogeneous problem. 

T h a t  g ives  
P(D ,Dt)F(Dx)h(x) = 0 w i t h  

X 

F(Dx)h(x) I = h(x)  . 
t = O  

(11-8) 

Then, t h e  formal solution t o  problem (11-1,2) may be wr i t ten  a s  

Convergence of t h e  formal s e r i e s  involved i s  t o  be handled j u s t  a s  i n  

sect ion 6. 
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